三角形的内角和说课稿

时间:2023-12-16 23:47:40
三角形的内角和说课稿

三角形的内角和说课稿

作为一位优秀的人民教师,通常会被要求编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那么什么样的说课稿才是好的呢?下面是小编收集整理的三角形的内角和说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

三角形的内角和说课稿1

一、教学目标

课程标准这样描述:通过观察、操作了解三角形内角和是180。

分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。

课前我对学情进行了分析:

1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。

2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:

1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。

2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。

二、评价设计

针对这一目标的完成,我设计了一下评价方式:

1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。

2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。

3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价

评价题目

1、通过3个练习题(1、做一做。2、说一说3、拼一拼、想一想)

检测学习目标1的掌握情况。

2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况

三、教具学具准备

教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格

学具准备:三角板、量角器.

四、教学过程

这节课的教学我通过一下四个环节完成。

1、观察猜测,引入新知;

2、动手操作,探索新知;

3、巩固新知,拓展应用;

4、总结评价、延伸知识。

第一环节,观察猜测,引入新知。

由图形引入,让学生指出锐角三角形,直角三角形,钝角三角形的三个内角,发现在这些三角形中最大的内角是钝角。问:想看钝角三角形72变吗?我们一起来看一看。课件演示:

(1)钝角变小,另外两个角怎样变?

(2)钝角变大,另外两个角怎样变?

(3)钝角变大、变大、变大再变大,还能再大吗?发现再大就成平角了。平角多少度?这时把三角形三个内角的加起来,和可能多少呢?猜测:180度。

这只是我们的猜测,(板书:猜测)数学是要用事实说话的,这节课我们就来学习三角形的内角和。(板书课题)这样由三种变化的三角形引入新课,激发学生兴趣的同时为后面的学习做准备

第二环节,动手操作,探索新知。

1、直角三角形的内角和。

(一)直角三角形内角和

先让学生观察一副三角板的内角和,发现都是180度,和猜测是一样的,是不是所有的直角三角形内角和都是180度呢?课件出示一些直角三角形,让学生用手中的工具验证你的猜测。

四人小组合作,拿出学具袋里三个红色的直角三角形和表格,用不同的方法验证猜测。学生可以“量一量”,也可以“剪一剪”,还可以“折一折”。汇报时要让学生说一说方法,同时在课件上展示。

这个环节引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。

(二)、锐角三角形、钝角三角形的内角和

课件出示将锐角三角形、钝角三角形,问:你能利用我们刚才学到的知识来研究它们的内角和吗?动手试一试,可以同桌讨论。(学生操作,汇报,课件演示)让学生模仿老师操作说理。由此得到了锐角三角形和钝角三角形的内角和也是180度。我们就可以说所有三角形的内角和都是180度。这是三角形的一个特性。

这样引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。

第三环节、巩固新知,拓展应用

用三角形的这一特性来解决一些问题

1、基本练习

通过做一做和说一说这两个练习来强化学生认知。

2、拓展练习

拼一拼、想一想

(1)两个三角形拼成大三角形,说出大三角形的内角和

(2)一个三角形去掉一部分

引导学生发现,无论三角形的形状或大小如何改变,内角和都是180度,看来三角形的内角和度数和他的大小形状都无关。

(3)再把这个三角形剪去一部分剪成一个四边形,它的内角和是多少度?

(4)如果变成五边形,你还能求出他的度数吗?

充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。

第四环节、总结评价、延伸知识

通过这个环节让学生谈一谈自己的收获或感受,对本节课的知识进行拓展升华。

五、板书设计:

三角形的内角和

猜测(180度)

验证:测量、撕拼、折叠结论

三角形的内角和是180度

我的板书简明扼要,体现了本节课的重点,而且是对本节课学习方法的一个回顾。

三角形的内角和说课稿2

尊敬的各位评委,各位老师:

大家好!今天我说课的内容是人教版义务教育课程标准实验教材数学四年级下册85页内容《三角形的内角和》。

一、教材分析

新课标把三角形的内角和作为第二学段中三角 ……此处隐藏24102个字……苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。

板书:

三角形的内角和

猜测验证结论应用

三角形内角和等于180。

三角形的内角和说课稿13

一、说教材

“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。

为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流等获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

1、知识目标:知道三角形内角和是180°。

2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。

3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。

教学重点:三角形内角和是180°的实际应用。

教学难点:探索三角形的内角和是180°

{二、教学用具}

本节课采用课件、不同形状的三角形、量件器等。

三、说教法

新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。

四、说学法

学法是学生再生知识的法宝。为了使学生能在整节课的探索活动中积极主动参与动手实践、自主探究、合作交流的学习活动,我设计了独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数是18度。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。

五、说教学流程

“将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者。在整个教学设计上力求充分体现“以学生发展为本”教育理念,我将教学流程拟定为“设疑导入——大胆猜想——动手验证——巩固内化&mdash

;—拓展延伸”,努力构建探索型的课堂教学模式。

1、设疑导入

教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。伊始上课,我想以前面学过的知识“三角形的分类”为切入点,给出不同形状的三角形,让学生说出它们的名称,有锐角三角形、直角三角形、钝角三角形,随后我提出挑战,让学生画一个很特殊的三角形:即含有两个直角的三角形,结果是可想而知的,学生是不可能画出来的,想知道为什么呢?学了“三角形内角和”我们就知道了。板书课题:三角形内角和。这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。

2、大胆猜想

学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想:为什么不能画出有两个直角的三角形呢?猜一猜三角形的内角和”大约是多少度?学生猜想时我在黑板上书写几个比较接近的度数。这样形成统一的认识,使后边的探索和验证活动有了明确的目标。

3、动手验证

学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,也不是随意放开让学生盲目的操作,我想把放和引有机的结合起来,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量量不同形状的三角形的三个内角拼一拼将三角形的三个内角可以拼成一个什么角,折一折将三角形的三个内角可以折成一个什么角,看一看无论是量、还是拼、或者是折我们得到的三角形内角和都是多少度?。

4、巩固内化:

俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我力争注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。

1、释疑练习:让学生用所学的知识说一说为什么画不出含有两个直角的三角形?目的是解释课前的设疑,从中培养学生应用意识和解决问题的能力;

2、基本练习:巩固本节课所学的知识。

3、变式练习:目的是是学生将知识转化成能力。

4、综合练习:目的是让学生感受数学与生活的联系,培养运用所学知识解决实际问题的能力。

5、拓展创新:力求体现“不同的人在数学上得到不同的发展”这一新课程理念。

数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。

总之,在本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,以思维训练为主线的教学思想;充分关注学生的自主探究与合作交流,注重培养学生的创新意识和实践能力。

《三角形的内角和说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式